为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件
面试题为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的?
面试官心理分析其实这块肯定是扯到高并发了,因为分库分表一定是为了支撑高并发、数据量大两个问题的。而且现在说实话,尤其是互联网类的公司面试,基本上都会来这么一下,分库分表如此普遍的技术问题,不问实在是不行,而如果你不知道那也实在是说不过去!
面试题剖析为什么要分库分表?(设计高并发系统的时候,数据库层面该如何设计?)说白了,分库分表是两回事儿,大家可别搞混了,可能是光分库不分表,也可能是光分表不分库,都有可能。
我先给大家抛出来一个场景。
假如我们现在是一个小创业公司(或者是一个 BAT 公司刚兴起的一个新部门),现在注册用户就 20 万,每天活跃用户就 1 万,每天单表数据量就 1000,然后高峰期每秒钟并发请求最多就 10。天,就这种系统,随便找一个有几年工作经验的,然后带几个刚培训出来的,随便干干都可以。
结果没想到我们运气居然这么好,碰上个 CEO 带着我们走上了康庄大道,业务发展迅猛,过了几个 ...
es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
面试题es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)?
面试官心理分析在搜索这块,lucene 是最流行的搜索库。几年前业内一般都问,你了解 lucene 吗?你知道倒排索引的原理吗?现在早已经 out 了,因为现在很多项目都是直接用基于 lucene 的分布式搜索引擎—— ElasticSearch,简称为 es。
而现在分布式搜索基本已经成为大部分互联网行业的 Java 系统的标配,其中尤为流行的就是 es,前几年 es 没火的时候,大家一般用 solr。但是这两年基本大部分企业和项目都开始转向 es 了。
所以互联网面试,肯定会跟你聊聊分布式搜索引擎,也就一定会聊聊 es,如果你确实不知道,那你真的就 out 了。
如果面试官问你第一个问题,确实一般都会问你 es 的分布式架构设计能介绍一下么?就看看你对分布式搜索引擎架构的一个基本理解。
面试题剖析ElasticSearch 设计的理念就是分布式搜索引擎,底层其实还是基于 lucene 的。核心思想就是在多台机器上启动多个 es 进程实例,组成了一个 es 集群。
es 中存储数据的基本单位是索引,比如说你现在要 ...
lucene 和 es 的前世今生
lucene 和 es 的前世今生lucene 是最先进、功能最强大的搜索库。如果直接基于 lucene 开发,非常复杂,即便写一些简单的功能,也要写大量的 Java 代码,需要深入理解原理。
elasticsearch 基于 lucene,隐藏了 lucene 的复杂性,提供了简单易用的 restful api / Java api 接口(另外还有其他语言的 api 接口)。
分布式的文档存储引擎
分布式的搜索引擎和分析引擎
分布式,支持 PB 级数据
es 的核心概念Near Realtime近实时,有两层意思:
从写入数据到数据可以被搜索到有一个小延迟(大概是 1s)
基于 es 执行搜索和分析可以达到秒级
Cluster 集群集群包含多个节点,每个节点属于哪个集群都是通过一个配置来决定的,对于中小型应用来说,刚开始一个集群就一个节点很正常。
Node 节点Node 是集群中的一个节点,节点也有一个名称,默认是随机分配的。默认节点会去加入一个名称为 elasticsearch 的集群。如果直接启动一堆节点,那么它们会自动组成一个 elasticsearch 集群 ...
无题
如何做技术选型?Sentinel 还是 Hystrix?Sentinel 是阿里中间件团队研发的面向分布式服务架构的轻量级高可用流量控制组件,于 2018 年 7 月正式开源。Sentinel 主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户提升服务的稳定性。大家可能会问:Sentinel 和之前经常用到的熔断降级库 Netflix Hystrix 有什么异同呢?本文将从资源模型和执行模型、隔离设计、熔断降级、实时指标统计设计等角度将 Sentinel 和 Hystrix 进行对比,希望在面临技术选型的时候,对各位开发者能有所帮助。
Sentinel 项目地址:https://github.com/alibaba/Sentinel
总体说明先来看一下 Hystrix 的官方介绍:
Hystrix is a library that helps you control the interactions between these distributed services by adding latency tolerance and fault tolera ...
如何设计可以动态扩容缩容的分库分表方案?
面试题如何设计可以动态扩容缩容的分库分表方案?
面试官心理分析对于分库分表来说,主要是面对以下问题:
选择一个数据库中间件,调研、学习、测试;
设计你的分库分表的一个方案,你要分成多少个库,每个库分成多少个表,比如 3 个库,每个库 4 个表;
基于选择好的数据库中间件,以及在测试环境建立好的分库分表的环境,然后测试一下能否正常进行分库分表的读写;
完成单库单表到分库分表的迁移,双写方案;
线上系统开始基于分库分表对外提供服务;
扩容了,扩容成 6 个库,每个库需要 12 个表,你怎么来增加更多库和表呢?
这个是你必须面对的一个事儿,就是你已经弄好分库分表方案了,然后一堆库和表都建好了,基于分库分表中间件的代码开发啥的都好了,测试都 ok 了,数据能均匀分布到各个库和各个表里去,而且接着你还通过双写的方案咔嚓一下上了系统,已经直接基于分库分表方案在搞了。
那么现在问题来了,你现在这些库和表又支撑不住了,要继续扩容咋办?这个可能就是说你的每个库的容量又快满了,或者是你的表数据量又太大了,也可能是你每个库的写并发太高了,你得继续扩容。
这都是玩儿分库分表线上必须经历的事儿。
面试题剖析 ...
request cache 请求缓存技术优化批量商品数据查询接口
基于 request cache 请求缓存技术优化批量商品数据查询接口Hystrix command 执行时 8 大步骤第三步,就是检查 Request cache 是否有缓存。
首先,有一个概念,叫做 Request Context 请求上下文,一般来说,在一个 web 应用中,如果我们用到了 Hystrix,我们会在一个 filter 里面,对每一个请求都施加一个请求上下文。就是说,每一次请求,就是一次请求上下文。然后在这次请求上下文中,我们会去执行 N 多代码,调用 N 多依赖服务,有的依赖服务可能还会调用好几次。
在一次请求上下文中,如果有多个 command,参数都是一样的,调用的接口也是一样的,而结果可以认为也是一样的。那么这个时候,我们可以让第一个 command 执行返回的结果缓存在内存中,然后这个请求上下文后续的其它对这个依赖的调用全部从内存中取出缓存结果就可以了。
这样的话,好处在于不用在一次请求上下文中反复多次执行一样的 command,避免重复执行网络请求,提升整个请求的性能。
举个栗子。比如说我们在一次请求上下文中,请求获取 productId 为 1 的数据 ...
基于 Hystrix 信号量机制实现资源隔离
基于 Hystrix 信号量机制实现资源隔离Hystrix 里面核心的一项功能,其实就是所谓的资源隔离,要解决的最最核心的问题,就是将多个依赖服务的调用分别隔离到各自的资源池内。避免说对某一个依赖服务的调用,因为依赖服务的接口调用的延迟或者失败,导致服务所有的线程资源全部耗费在这个服务的接口调用上。一旦说某个服务的线程资源全部耗尽的话,就可能导致服务崩溃,甚至说这种故障会不断蔓延。
Hystrix 实现资源隔离,主要有两种技术:
线程池
信号量
默认情况下,Hystrix 使用线程池模式。
前面已经说过线程池技术了,这一小节就来说说信号量机制实现资源隔离,以及这两种技术的区别与具体应用场景。
信号量机制信号量的资源隔离只是起到一个开关的作用,比如,服务 A 的信号量大小为 10,那么就是说它同时只允许有 10 个 tomcat 线程来访问服务 A,其它的请求都会被拒绝,从而达到资源隔离和限流保护的作用。
线程池与信号量区别线程池隔离技术,并不是说去控制类似 tomcat 这种 web 容器的线程。更加严格的意义上来说,Hystrix 的线程池隔离技术,控制的是 tomcat 线程 ...
深入 Hystrix 线程池隔离与接口限流
深入 Hystrix 线程池隔离与接口限流前面讲了 Hystrix 的 request cache 请求缓存、fallback 优雅降级、circuit breaker 断路器快速熔断,这一讲,我们来详细说说 Hystrix 的线程池隔离与接口限流。
Hystrix 通过判断线程池或者信号量是否已满,超出容量的请求,直接 Reject 走降级,从而达到限流的作用。
限流是限制对后端的服务的访问量,比如说你对 MySQL、Redis、Zookeeper 以及其它各种后端中间件的资源的访问的限制,其实是为了避免过大的流量直接打死后端的服务。
线程池隔离技术的设计Hystrix 采用了 Bulkhead Partition 舱壁隔离技术,来将外部依赖进行资源隔离,进而避免任何外部依赖的故障导致本服务崩溃。
舱壁隔离,是说将船体内部空间区隔划分成若干个隔舱,一旦某几个隔舱发生破损进水,水流不会在其间相互流动,如此一来船舶在受损时,依然能具有足够的浮力和稳定性,进而减低立即沉船的危险。
Hystrix 对每个外部依赖用一个单独的线程池,这样的话,如果对那个外部依赖调用延迟很严重,最多就是耗尽 ...
基于 Hystrix 线程池技术实现资源隔离
基于 Hystrix 线程池技术实现资源隔离上一讲提到,如果从 Nginx 开始,缓存都失效了,Nginx 会直接通过缓存服务调用商品服务获取最新商品数据(我们基于电商项目做个讨论),有可能出现调用延时而把缓存服务资源耗尽的情况。这里,我们就来说说,怎么通过 Hystrix 线程池技术实现资源隔离。
资源隔离,就是说,你如果要把对某一个依赖服务的所有调用请求,全部隔离在同一份资源池内,不会去用其它资源了,这就叫资源隔离。哪怕对这个依赖服务,比如说商品服务,现在同时发起的调用量已经到了 1000,但是线程池内就 10 个线程,最多就只会用这 10 个线程去执行,不会说,对商品服务的请求,因为接口调用延时,将 tomcat 内部所有的线程资源全部耗尽。
Hystrix 进行资源隔离,其实是提供了一个抽象,叫做 command。这也是 Hystrix 最最基本的资源隔离技术。
利用 HystrixCommand 获取单条数据我们通过将调用商品服务的操作封装在 HystrixCommand 中,限定一个 key,比如下面的 GetProductInfoCommandGroup,在这里我们可以简 ...
基于 timeout 机制为服务接口调用超时提供安全保护
基于 timeout 机制为服务接口调用超时提供安全保护一般来说,在调用依赖服务的接口的时候,比较常见的一个问题就是超时。超时是在一个复杂的分布式系统中,导致系统不稳定,或者系统抖动。出现大量超时,线程资源会被 hang 死,从而导致吞吐量大幅度下降,甚至服务崩溃。
你去调用各种各样的依赖服务,特别是在大公司,你甚至都不认识开发一个服务的人,你都不知道那个人的技术水平怎么样,对那个人根本不了解。
Peter Steiner 说过,”On the Internet, nobody knows you’re a dog“,也就是说在互联网的另外一头,你都不知道甚至坐着一条狗。
像特别复杂的分布式系统,特别是在大公司里,多个团队、大型协作,你可能都不知道服务是谁的,很可能说开发服务的那个哥儿们甚至是一个实习生。依赖服务的接口性能可能很不稳定,有时候 2ms,有时候 200ms,甚至 2s,都有可能。
如果你不对各种依赖服务接口的调用做超时控制,来给你的服务提供安全保护措施,那么很可能你的服务就被各种垃圾的依赖服务的性能给拖死了。大量的接口调用很慢,大量的线程被卡死。如果你做了资源的隔离,那 ...